7 research outputs found

    Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application

    Full text link
    [EN] The study presents some results of customer paths¿ analysis in a shopping mall. Bluetooth-based technology is used to collect data. The event log containing spatiotemporal information is analyzed with process mining. Process mining is a technique that enables one to see the whole process contrary to data-centric methods. The use of process mining can provide a readily-understandable view of the customer paths. We installed iBeacon devices, a Bluetooth-based positioning system, in the shopping mall. During December 2017 and January and February 2018, close to 8000 customer data were captured. We aim to investigate customer behaviors regarding gender by using their paths. We can determine the gender of customers if they go to the men¿s bathroom or women¿s bathroom. Since the study has a comprehensive scope, we focused on male and female customers¿ behaviors. This study shows that male and female customers have different behaviors. Their duration and paths, in general, are not similar. In addition, the study shows that the process mining technique is a viable way to analyze customer behavior using Bluetooth-based technology.Dogan, O.; Bayo-Monton, JL.; Fernández Llatas, C.; Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors. 19(3):1-20. https://doi.org/10.3390/s19030557S120193Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005Merad, D., Aziz, K.-E., Iguernaissi, R., Fertil, B., & Drap, P. (2016). Tracking multiple persons under partial and global occlusions: Application to customers’ behavior analysis. Pattern Recognition Letters, 81, 11-20. doi:10.1016/j.patrec.2016.04.011Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035Hwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering, 47(2), 237-267. doi:10.1016/s0169-023x(03)00066-1Ou-Yang, C., & Winarjo, H. (2011). Petri-net integration – An approach to support multi-agent process mining. Expert Systems with Applications, 38(4), 4039-4051. doi:10.1016/j.eswa.2010.09.066Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., … Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Funkner, A. A., Yakovlev, A. N., & Kovalchuk, S. V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records. Procedia Computer Science, 119, 234-244. doi:10.1016/j.procs.2017.11.181Jans, M., Alles, M., & Vasarhelyi, M. (2013). The case for process mining in auditing: Sources of value added and areas of application. International Journal of Accounting Information Systems, 14(1), 1-20. doi:10.1016/j.accinf.2012.06.015Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047pDe Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & Almazán, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015Kang, L., & Hansen, M. (2017). Behavioral analysis of airline scheduled block time adjustment. Transportation Research Part E: Logistics and Transportation Review, 103, 56-68. doi:10.1016/j.tre.2017.04.004Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. P. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251. doi:10.1016/j.eswa.2015.07.040Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003M. Valle, A., A.P. Santos, E., & R. Loures, E. (2017). Applying process mining techniques in software process appraisals. Information and Software Technology, 87, 19-31. doi:10.1016/j.infsof.2017.01.004Juhaňák, L., Zounek, J., & Rohlíková, L. (2019). Using process mining to analyze students’ quiz-taking behavior patterns in a learning management system. Computers in Human Behavior, 92, 496-506. doi:10.1016/j.chb.2017.12.015Sedrakyan, G., De Weerdt, J., & Snoeck, M. (2016). Process-mining enabled feedback: «Tell me what I did wrong» vs. «tell me how to do it right». Computers in Human Behavior, 57, 352-376. doi:10.1016/j.chb.2015.12.040Schoor, C., & Bannert, M. (2012). Exploring regulatory processes during a computer-supported collaborative learning task using process mining. Computers in Human Behavior, 28(4), 1321-1331. doi:10.1016/j.chb.2012.02.016Werner, M., & Gehrke, N. (2015). Multilevel Process Mining for Financial Audits. IEEE Transactions on Services Computing, 8(6), 820-832. doi:10.1109/tsc.2015.2457907De Weerdt, J., Schupp, A., Vanderloock, A., & Baesens, B. (2013). Process Mining for the multi-faceted analysis of business processes—A case study in a financial services organization. Computers in Industry, 64(1), 57-67. doi:10.1016/j.compind.2012.09.010Herbert, L., Hansen, Z. N. L., Jacobsen, P., & Cunha, P. (2014). Evolutionary Optimization of Production Materials Workflow Processes. Procedia CIRP, 25, 53-60. doi:10.1016/j.procir.2014.10.010Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008Yoshimura, Y., Krebs, A., & Ratti, C. (2017). Noninvasive Bluetooth Monitoring of Visitors’ Length of Stay at the Louvre. IEEE Pervasive Computing, 16(2), 26-34. doi:10.1109/mprv.2017.33Cao, Q., Jones, D. R., & Sheng, H. (2014). Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information & Management, 51(2), 225-239. doi:10.1016/j.im.2013.11.007Larson, J. S., Bradlow, E. T., & Fader, P. S. (2005). An exploratory look at supermarket shopping paths. International Journal of Research in Marketing, 22(4), 395-414. doi:10.1016/j.ijresmar.2005.09.005Fernandez-Llatas, C., Martinez-Millana, A., Martinez-Romero, A., Benedi, J. M., & Traver, V. (2015). Diabetes care related process modelling using Process Mining techniques. Lessons learned in the application of Interactive Pattern Recognition: coping with the Spaghetti Effect. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318809Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884De Medeiros, A. K. A., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi:10.1007/s10618-006-0061-7Heyer, L. J. (1999). Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research, 9(11), 1106-1115. doi:10.1101/gr.9.11.1106Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68. doi:10.1016/j.eswa.2005.09.00

    A Service Discovery Solution for Edge Choreography-Based Distributed Embedded Systems

    Full text link
    [EN] This paper presents a solution to support service discovery for edge choreography based distributed embedded systems. The Internet of Things (IoT) edge architectural layer is composed of Raspberry Pi machines. Each machine hosts different services organized based on the choreography collaborative paradigm. The solution adds to the choreography middleware three messages passing models to be coherent and compatible with current IoT messaging protocols. It is aimed to support blind hot plugging of new machines and help with service load balance. The discovery mechanism is implemented as a broker service and supports regular expressions (Regex) in message scope to discern both publishing patterns offered by data providers and client services necessities. Results compare Control Process Unit (CPU) usage in a request¿response and datacentric configuration and analyze both regex interpreter latency times compared with a traditional message structure as well as its impact on CPU and memory consumption.The choreography engine was developed and supported by the SABIEN research group of the Universitat Politecnica de Valencia (http://www.sabien.upv.es/en/).Blanc Clavero, S.; Bayo-Monton, JL.; Palanca-Barrio, S.; Arreaga-Alvarado, NX. (2021). A Service Discovery Solution for Edge Choreography-Based Distributed Embedded Systems. Sensors. 21(2):1-19. https://doi.org/10.3390/s21020672S11921

    Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment

    Full text link
    [EN] Aging population increase demands for solutions to help the solo-resident elderly live independently. Unobtrusive data collection in a smart home environment can monitor and assess elderly residents' health state based on changes in their mobility patterns. In this paper, a smart home system testbed setup for a solo-resident house is discussed and evaluated. We use paired Passive infra-red (PIR) sensors at each entry of a house and capture the resident's activities to model mobility patterns. We present the required testbed implementation phases, i.e., deployment, post-deployment analysis, re-deployment, and conduct behavioural data analysis to highlight the usability of collected data from a smart home. The main contribution of this work is to apply intelligence from a post-deployment process mining technique (namely, the parallel activity log inference algorithm (PALIA)) to find the best configuration for data collection in order to minimise the errors. Based on the post-deployment analysis, a re-deployment phase is performed, and results show the improvement of collected data accuracy in re-deployment phase from 81.57% to 95.53%. To complete our analysis, we apply the well-known CASAS project dataset as a reference to conduct a comparison with our collected results which shows a similar pattern. The collected data further is processed to use the level of activity of the solo-resident for a behaviour assessment.Shirali, M.; Bayo-Monton, JL.; Fernández Llatas, C.; Ghassemian, M.; Traver Salcedo, V. (2020). Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment. Sensors. 20(24):1-25. https://doi.org/10.3390/s20247167S1252024Lutz, W., Sanderson, W., & Scherbov, S. (2001). The end of world population growth. Nature, 412(6846), 543-545. doi:10.1038/35087589United Nations, Department of Economic and Social Affairs, World Population Prospoects 2019 https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdfAtzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140. doi:10.1016/j.adhoc.2016.12.004Cook, D. J., Duncan, G., Sprint, G., & Fritz, R. L. (2018). Using Smart City Technology to Make Healthcare Smarter. Proceedings of the IEEE, 106(4), 708-722. doi:10.1109/jproc.2017.2787688Cook, D. J., & Krishnan, N. (2014). Mining the home environment. Journal of Intelligent Information Systems, 43(3), 503-519. doi:10.1007/s10844-014-0341-4Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications, 97, 48-65. doi:10.1016/j.jnca.2017.08.017Palipana, S., Pietropaoli, B., & Pesch, D. (2017). Recent advances in RF-based passive device-free localisation for indoor applications. Ad Hoc Networks, 64, 80-98. doi:10.1016/j.adhoc.2017.06.007Chen, G., Wang, A., Zhao, S., Liu, L., & Chang, C.-Y. (2017). Latent feature learning for activity recognition using simple sensors in smart homes. Multimedia Tools and Applications, 77(12), 15201-15219. doi:10.1007/s11042-017-5100-4Tewell, J., O’Sullivan, D., Maiden, N., Lockerbie, J., & Stumpf, S. (2019). Monitoring meaningful activities using small low-cost devices in a smart home. Personal and Ubiquitous Computing, 23(2), 339-357. doi:10.1007/s00779-019-01223-2Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 10, 138-154. doi:10.1016/j.pmcj.2012.07.003Wang, A., Chen, G., Wu, X., Liu, L., An, N., & Chang, C.-Y. (2018). Towards Human Activity Recognition: A Hierarchical Feature Selection Framework. Sensors, 18(11), 3629. doi:10.3390/s18113629Liu, Y., Wang, X., Zhai, Z., Chen, R., Zhang, B., & Jiang, Y. (2019). Timely daily activity recognition from headmost sensor events. ISA Transactions, 94, 379-390. doi:10.1016/j.isatra.2019.04.026Viani, F., Robol, F., Polo, A., Rocca, P., Oliveri, G., & Massa, A. (2013). Wireless Architectures for Heterogeneous Sensing in Smart Home Applications: Concepts and Real Implementation. Proceedings of the IEEE, 101(11), 2381-2396. doi:10.1109/jproc.2013.2266858Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2011). Discovering Activities to Recognize and Track in a Smart Environment. IEEE Transactions on Knowledge and Data Engineering, 23(4), 527-539. doi:10.1109/tkde.2010.148Samsung SmartThings http://www.smartthings.com/Apple HomeKit https://www.apple.com/ios/home/Vera3 Advanced Smart Home Controller http://getvera.com/controllers/vera3/AndroidThings https://developer.android.com/things/index.htmlTeleAlarm Assisted Living http://www.telealarm.com/en/products/assisted-livingBirdie—Connected Sensors around the Home https://birdie.care/AllJoyn Framework https://identity.allseenalliance.org/developersCook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A Smart Home in a Box. Computer, 46(7), 62-69. doi:10.1109/mc.2012.328Skubic, M., Alexander, G., Popescu, M., Rantz, M., & Keller, J. (2009). A smart home application to eldercare: Current status and lessons learned. Technology and Health Care, 17(3), 183-201. doi:10.3233/thc-2009-0551Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The Gator Tech Smart House: a programmable pervasive space. Computer, 38(3), 50-60. doi:10.1109/mc.2005.107Doctor, F., Hagras, H., & Callaghan, V. (2005). A Fuzzy Embedded Agent-Based Approach for Realizing Ambient Intelligence in Intelligent Inhabited Environments. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 35(1), 55-65. doi:10.1109/tsmca.2004.838488Abowd, G. D., & Mynatt, E. D. (2005). Designing for the Human Experience in Smart Environments. Smart Environments, 151-174. doi:10.1002/047168659x.ch7Technology Integrated Health Management (TIHM) Project https://www.sabp.nhs.uk/tihmAhvar, E., Daneshgar-Moghaddam, N., Ortiz, A. M., Lee, G. M., & Crespi, N. (2016). On analyzing user location discovery methods in smart homes: A taxonomy and survey. Journal of Network and Computer Applications, 76, 75-86. doi:10.1016/j.jnca.2016.09.012Milenkovic, M., & Amft, O. (2013). Recognizing Energy-related Activities Using Sensors Commonly Installed in Office Buildings. Procedia Computer Science, 19, 669-677. doi:10.1016/j.procs.2013.06.089Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557Schmitter-Edgecombe, M., & Cook, D. J. (2009). Assessing the Quality of Activities in a Smart Environment. Methods of Information in Medicine, 48(05), 480-485. doi:10.3414/me0592Alberdi Aramendi, A., Weakley, A., Aztiria Goenaga, A., Schmitter-Edgecombe, M., & Cook, D. J. (2018). Automatic assessment of functional health decline in older adults based on smart home data. Journal of Biomedical Informatics, 81, 119-130. doi:10.1016/j.jbi.2018.03.009Dawadi, P. N., Cook, D. J., & Schmitter-Edgecombe, M. (2016). Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. IEEE Journal of Biomedical and Health Informatics, 20(4), 1188-1194. doi:10.1109/jbhi.2015.2445754Sprint, G., Cook, D. J., & Schmitter-Edgecombe, M. (2017). Unsupervised Detection and Analysis of Changes in Everyday Physical Activity Data. Intelligent Systems Reference Library, 97-122. doi:10.1007/978-3-319-67513-8_6Taheri Tanjanai, P., Moradinazar, M., & Najafi, F. (2016). Prevalence of depression and related social and physical factors amongst the Iranian elderly population in 2012. Geriatrics & Gerontology International, 17(1), 126-131. doi:10.1111/ggi.12680Zhao, Z., Zhang, M., Yang, C., Fang, J., & Huang, G. Q. (2018). Distributed and collaborative proactive tandem location tracking of vehicle products for warehouse operations. Computers & Industrial Engineering, 125, 637-648. doi:10.1016/j.cie.2018.05.00

    Evaluation of Google Glass Technical Limitations on Their Integration in Medical Systems

    Full text link
    [EN] Google Glass is a wearable sensor presented to facilitate access to information and assist while performing complex tasks. Despite the withdrawal of Google in supporting the product, today there are multiple applications and much research analyzing the potential impact of this technology in different fields of medicine. Google Glass satisfies the need of managing and having rapid access to real-time information in different health care scenarios. Among the most common applications are access to electronic medical records, display monitorizations, decision support and remote consultation in specialties ranging from ophthalmology to surgery and teaching. The device enables a user-friendly hands-free interaction with remote health information systems and broadcasting medical interventions and consultations from a first-person point of view. However, scientific evidence highlights important technical limitations in its use and integration, such as failure in connectivity, poor reception of images and automatic restart of the device. This article presents a technical study on the aforementioned limitations (specifically on the latency, reliability and performance) on two standard communication schemes in order to categorize and identify the sources of the problems. Results have allowed us to obtain a basis to define requirements for medical applications to prevent network, computational and processing failures associated with the use of Google Glass.Authors would like to acknowledge the Laboratory for the Analysis for Human Behavior (www.sabien.upv.es/lach) and the Operative Program FEDER 2007/2013, for providing the necessary materials to undertake the presented research. The work done by A.L. was funded by the Ministry of Economy and Competitiveness: Promoting Youth Employment Program and Implementation of the (PEJ-2014-A-06813) Youth Guarantee 2014. The subsidized activity is part of the National System of Youth Guarantee and are co-financed under the Operational Program for Youth Employment, with financial resources from the Initiative Youth Employment (IYE) and the European Social Fund (ESF) for the period 2014-2020.Martínez Millana, A.; Bayo Montón, JL.; Lizondo García, A.; Fernández Llatas, C.; Traver Salcedo, V. (2016). Evaluation of Google Glass Technical Limitations on Their Integration in Medical Systems. Sensors. 16(2142):1-12. https://doi.org/10.3390/s16122142S112162142Abrahams, E., Ginsburg, G. S., & Silver, M. (2005). The Personalized Medicine Coalition. American Journal of PharmacoGenomics, 5(6), 345-355. doi:10.2165/00129785-200505060-00002Eysenbach, G. (2001). What is e-health? Journal of Medical Internet Research, 3(2), e20. doi:10.2196/jmir.3.2.e20The Truth about Google X: An Exclusive Look Behind the Secretive Lab’s Closed Doorshttps://www.fastcompany.com/3028156/united-states-of-innovation/the-google-x-factorGlauser, W. (2013). Doctors among early adopters of Google Glass. Canadian Medical Association Journal, 185(16), 1385-1385. doi:10.1503/cmaj.109-4607Google Glass at Workhttps://developers.google.com/glass/Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 9(1), 21. doi:10.1186/1743-0003-9-21Davis, C. R., & Rosenfield, L. K. (2015). Looking at Plastic Surgery through Google Glass. Plastic and Reconstructive Surgery, 135(3), 918-928. doi:10.1097/prs.0000000000001056Iversen, M. D., Kiami, S., Singh, K., Masiello, I., & von Heideken, J. (2016). Prospective, randomised controlled trial to evaluate the effect of smart glasses on vestibular examination skills. BMJ Innovations, 2(2), 99-105. doi:10.1136/bmjinnov-2015-000094Liebert, C. A., Zayed, M. A., Aalami, O., Tran, J., & Lau, J. N. (2016). Novel Use of Google Glass for Procedural Wireless Vital Sign Monitoring. Surgical Innovation, 23(4), 366-373. doi:10.1177/1553350616630142Longley, C., & Whitaker, D. (2015). Google Glass Glare: disability glare produced by a head-mounted visual display. Ophthalmic and Physiological Optics, 36(2), 167-173. doi:10.1111/opo.12264Trese, M. G. J., Khan, N. W., Branham, K., Conroy, E. B., & Moroi, S. E. (2016). Expansion of Severely Constricted Visual Field Using Google Glass. Ophthalmic Surgery, Lasers and Imaging Retina, 47(5), 486-489. doi:10.3928/23258160-20160419-15Jeroudi, O. M., Christakopoulos, G., Christopoulos, G., Kotsia, A., Kypreos, M. A., Rangan, B. V., … Brilakis, E. S. (2015). Accuracy of Remote Electrocardiogram Interpretation With the Use of Google Glass Technology. The American Journal of Cardiology, 115(3), 374-377. doi:10.1016/j.amjcard.2014.11.008Cicero, M. X., Walsh, B., Solad, Y., Whitfill, T., Paesano, G., Kim, K., … Cone, D. C. (2015). Do You See What I See? Insights from Using Google Glass for Disaster Telemedicine Triage. Prehospital and Disaster Medicine, 30(1), 4-8. doi:10.1017/s1049023x1400140xWu, T. S., Dameff, C. J., & Tully, J. L. (2014). Ultrasound-Guided Central Venous Access Using Google Glass. The Journal of Emergency Medicine, 47(6), 668-675. doi:10.1016/j.jemermed.2014.07.045Lewis, T. L., & Vohra, R. S. (2013). Smartphones make smarter surgeons. British Journal of Surgery, 101(4), 296-297. doi:10.1002/bjs.9328Albrecht, U.-V., von Jan, U., Kuebler, J., Zoeller, C., Lacher, M., Muensterer, O. J., … Hagemeier, L. (2014). Google Glass for Documentation of Medical Findings: Evaluation in Forensic Medicine. Journal of Medical Internet Research, 16(2), e53. doi:10.2196/jmir.3225Waxman, B. P. (2012). Medicine in small doses. ANZ Journal of Surgery, 82(11), 768-768. doi:10.1111/j.1445-2197.2012.06276.xKortuem, G., Bauer, M., & Segall, Z. (1999). Mobile Networks and Applications, 4(1), 49-58. doi:10.1023/a:1019122125996Zou, G., Gan, Y., Chen, Y., Zhang, B., Huang, R., Xu, Y., & Xiang, Y. (2014). Towards automated choreography of Web services using planning in large scale service repositories. Applied Intelligence, 41(2), 383-404. doi:10.1007/s10489-014-0522-4O’Brien, P. D., & Nicol, R. C. (1998). BT Technology Journal, 16(3), 51-59. doi:10.1023/a:1009621729979Muensterer, O. J., Lacher, M., Zoeller, C., Bronstein, M., & Kübler, J. (2014). Google Glass in pediatric surgery: An exploratory study. International Journal of Surgery, 12(4), 281-289. doi:10.1016/j.ijsu.2014.02.003Hwang, A. D., & Peli, E. (2014). An Augmented-Reality Edge Enhancement Application for Google Glass. Optometry and Vision Science, 91(8), 1021-1030. doi:10.1097/opx.0000000000000326Tully, J., Dameff, C., Kaib, S., & Moffitt, M. (2015). Recording Medical Students’ Encounters With Standardized Patients Using Google Glass. Academic Medicine, 90(3), 314-316. doi:10.1097/acm.0000000000000620Fox, B. I., & Felkey, B. G. (2013). Potential Uses of Google Glass in the Pharmacy. Hospital Pharmacy, 48(9), 783-784. doi:10.1310/hpj4809-783Nguyen, V., & Gruteser, M. (2015). First Experiences with GOOGLE GLASS in Mobile Research. ACM SIGMOBILE Mobile Computing and Communications Review, 18(4), 44-47. doi:10.1145/2721914.272193

    Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care

    Full text link
    [EN] Health and sociological indicators alert that life expectancy is increasing, hence so are the years that patients have to live with chronic diseases and co-morbidities. With the advancement in ICT, new tools and paradigms are been explored to provide effective and efficient health care. Telemedicine and health sensors stand as indispensable tools for promoting patient engagement, self-management of diseases and assist doctors to remotely follow up patients. In this paper, we evaluate a rapid prototyping solution for information merging based on five health sensors and two low-cost ubiquitous computing components: Arduino and Raspberry Pi. Our study, which is entirely described with the purpose of reproducibility, aimed to evaluate the extent to which portable technologies are capable of integrating wearable sensors by comparing two deployment scenarios: Raspberry Pi 3 and Personal Computer. The integration is implemented using a choreography engine to transmit data from sensors to a display unit using web services and a simple communication protocol with two modes of data retrieval. Performance of the two set-ups is compared by means of the latency in the wearable data transmission and data loss. PC has a delay of 0.051 ± 0.0035 s (max = 0.2504 s), whereas the Raspberry Pi yields a delay of 0.0175 ± 0.149 s (max = 0.294 s) for N = 300. Our analysis confirms that portable devices (p << 0.01) are suitable to support the transmission and analysis of biometric signals into scalable telemedicine systems.Bayo-Monton, JL.; Martinez-Millana, A.; Han, W.; Fernández Llatas, C.; Sun, Y.; Traver Salcedo, V. (2018). Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors. 18(6). https://doi.org/10.3390/s18061851S18

    Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes

    Full text link
    [EN] Life expectancy is increasing and, so, the years that patients have to live with chronic diseases and co-morbidities. Type 2 diabetes is one of the most prevalent chronic diseases, specifically linked to being overweight and ages over sixty. Recent studies have demonstrated the effectiveness of new strategies to delay and even prevent the onset of type 2 diabetes by a combination of active and healthy lifestyle on cohorts of mid to high risk subjects. Prospective research has been driven on large groups of the population to build risk scores that aim to obtain a rule for the classification of patients according to the odds for developing the disease. Currently, there are more than two hundred models and risk scores for doing this, but a few have been properly evaluated in external groups and integrated into a clinical application for decision support. In this paper, we present a novel system architecture based on service choreography and hybrid modeling, which enables a distributed integration of clinical databases, statistical and mathematical engines and web interfaces to be deployed in a clinical setting. The system was assessed during an eight-week continuous period with eight endocrinologists of a hospital who evaluated up to 8080 patients with seven different type 2 diabetes risk models implemented in two mathematical engines. Throughput was assessed as a matter of technical key performance indicators, confirming the reliability and efficiency of the proposed architecture to integrate hybrid artificial intelligence tools into daily clinical routine to identify high risk subjects.The authors wish to acknowledge the consortium of the MOSAIC project (funded by the European Commission, Grant No. FP7-ICT 600914) for their commitment during concept development, which led to the development of the research reported in this manuscriptMartinez-Millana, A.; Bayo-Monton, JL.; Argente-Pla, M.; Fernández Llatas, C.; Merino-Torres, JF.; Traver Salcedo, V. (2018). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors. 18 (1)(79):1-26. https://doi.org/10.3390/s18010079S12618 (1)79Thomas, C. C., & Philipson, L. H. (2015). Update on Diabetes Classification. Medical Clinics of North America, 99(1), 1-16. doi:10.1016/j.mcna.2014.08.015Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846. doi:10.1038/nature05482Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002Beagley, J., Guariguata, L., Weil, C., & Motala, A. A. (2014). Global estimates of undiagnosed diabetes in adults. Diabetes Research and Clinical Practice, 103(2), 150-160. doi:10.1016/j.diabres.2013.11.001Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A., & Brindle, P. (2009). Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ, 338(mar17 2), b880-b880. doi:10.1136/bmj.b880Meigs, J. B., Shrader, P., Sullivan, L. M., McAteer, J. B., Fox, C. S., Dupuis, J., … Cupples, L. A. (2008). Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. New England Journal of Medicine, 359(21), 2208-2219. doi:10.1056/nejmoa0804742Gillies, C. L., Abrams, K. R., Lambert, P. C., Cooper, N. J., Sutton, A. J., Hsu, R. T., & Khunti, K. (2007). Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ, 334(7588), 299. doi:10.1136/bmj.39063.689375.55Noble, D., Mathur, R., Dent, T., Meads, C., & Greenhalgh, T. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343(nov28 1), d7163-d7163. doi:10.1136/bmj.d7163Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal Medicine, 162(1), 55. doi:10.7326/m14-0697Steyerberg, E. W., Moons, K. G. M., van der Windt, D. A., Hayden, J. A., Perel, P., … Schroter, S. (2013). Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Medicine, 10(2), e1001381. doi:10.1371/journal.pmed.1001381Collins, G. S., & Moons, K. G. M. (2012). Comparing risk prediction models. BMJ, 344(may24 2), e3186-e3186. doi:10.1136/bmj.e3186Riley, R. D., Ensor, J., Snell, K. I. E., Debray, T. P. A., Altman, D. G., Moons, K. G. M., & Collins, G. S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, i3140. doi:10.1136/bmj.i3140Reilly, B. M., & Evans, A. T. (2006). Translating Clinical Research into Clinical Practice: Impact of Using Prediction Rules To Make Decisions. Annals of Internal Medicine, 144(3), 201. doi:10.7326/0003-4819-144-3-200602070-00009Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. M. (2009). Prognosis and prognostic research: validating a prognostic model. BMJ, 338(may28 1), b605-b605. doi:10.1136/bmj.b605Moons, K. G. M., Royston, P., Vergouwe, Y., Grobbee, D. E., & Altman, D. G. (2009). Prognosis and prognostic research: what, why, and how? BMJ, 338(feb23 1), b375-b375. doi:10.1136/bmj.b375Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., … Kattan, M. W. (2010). Assessing the Performance of Prediction Models. Epidemiology, 21(1), 128-138. doi:10.1097/ede.0b013e3181c30fb2Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784-1789. doi:10.1016/j.eswa.2009.07.064Schmidt, M. I., Duncan, B. B., Bang, H., Pankow, J. S., Ballantyne, C. M., … Golden, S. H. (2005). Identifying Individuals at High Risk for Diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care, 28(8), 2013-2018. doi:10.2337/diacare.28.8.2013Talmud, P. J., Hingorani, A. D., Cooper, J. A., Marmot, M. G., Brunner, E. J., Kumari, M., … Humphries, S. E. (2010). Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ, 340(jan14 1), b4838-b4838. doi:10.1136/bmj.b4838Sackett, D. L. (1997). Evidence-based medicine. Seminars in Perinatology, 21(1), 3-5. doi:10.1016/s0146-0005(97)80013-4Segagni, D., Ferrazzi, F., Larizza, C., Tibollo, V., Napolitano, C., Priori, S. G., & Bellazzi, R. (2011). R Engine Cell: integrating R into the i2b2 software infrastructure. Journal of the American Medical Informatics Association, 18(3), 314-317. doi:10.1136/jamia.2010.007914Semantic Webhttp://www.w3.org/2001/sw/Murphy, S. N., Weber, G., Mendis, M., Gainer, V., Chueh, H. C., Churchill, S., & Kohane, I. (2010). Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). Journal of the American Medical Informatics Association, 17(2), 124-130. doi:10.1136/jamia.2009.000893Murphy, S., Churchill, S., Bry, L., Chueh, H., Weiss, S., Lazarus, R., … Kohane, I. (2009). Instrumenting the health care enterprise for discovery research in the genomic era. Genome Research, 19(9), 1675-1681. doi:10.1101/gr.094615.109Lindstrom, J., & Tuomilehto, J. (2003). The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725-731. doi:10.2337/diacare.26.3.725Alssema, M., Vistisen, D., Heymans, M. W., Nijpels, G., Glümer, C., … Dekker, J. M. (2010). The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia, 54(5), 1004-1012. doi:10.1007/s00125-010-1990-7Mann, D. M., Bertoni, A. G., Shimbo, D., Carnethon, M. R., Chen, H., Jenny, N. S., & Muntner, P. (2010). Comparative Validity of 3 Diabetes Mellitus Risk Prediction Scoring Models in a Multiethnic US Cohort: The Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology, 171(9), 980-988. doi:10.1093/aje/kwq030Stern, M. P., Williams, K., & Haffner, S. M. (2002). Identification of Persons at High Risk for Type 2 Diabetes Mellitus: Do We Need the Oral Glucose Tolerance Test? Annals of Internal Medicine, 136(8), 575. doi:10.7326/0003-4819-136-8-200204160-00006Abdul-Ghani, M. A., Abdul-Ghani, T., Stern, M. P., Karavic, J., Tuomi, T., Bo, I., … Groop, L. (2011). Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk. Diabetes Care, 34(9), 2108-2112. doi:10.2337/dc10-2201Rahman, M., Simmons, R. K., Harding, A.-H., Wareham, N. J., & Griffin, S. J. (2008). A simple risk score identifies individuals at high risk of developing Type 2 diabetes: a prospective cohort study. Family Practice, 25(3), 191-196. doi:10.1093/fampra/cmn024Guasch-Ferré, M., Bulló, M., Costa, B., Martínez-Gonzalez, M. Á., Ibarrola-Jurado, N., … Estruch, R. (2012). A Risk Score to Predict Type 2 Diabetes Mellitus in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk. PLoS ONE, 7(3), e33437. doi:10.1371/journal.pone.0033437Wilson, P. W. F. (2007). Prediction of Incident Diabetes Mellitus in Middle-aged Adults. Archives of Internal Medicine, 167(10), 1068. doi:10.1001/archinte.167.10.1068Franzin, A., Sambo, F., & Di Camillo, B. (2016). bnstruct: an R package for Bayesian Network structure learning in the presence of missing data. Bioinformatics, btw807. doi:10.1093/bioinformatics/btw807Rood, B., & Lewis, M. J. (2009). Grid Resource Availability Prediction-Based Scheduling and Task Replication. Journal of Grid Computing, 7(4), 479-500. doi:10.1007/s10723-009-9135-2Ramakrishnan, L., & Reed, D. A. (2009). Predictable quality of service atop degradable distributed systems. Cluster Computing, 16(2), 321-334. doi:10.1007/s10586-009-0078-yKianpisheh, S., Kargahi, M., & Charkari, N. M. (2017). Resource Availability Prediction in Distributed Systems: An Approach for Modeling Non-Stationary Transition Probabilities. IEEE Transactions on Parallel and Distributed Systems, 28(8), 2357-2372. doi:10.1109/tpds.2017.2659746Weber, G. M., Murphy, S. N., McMurry, A. J., MacFadden, D., Nigrin, D. J., Churchill, S., & Kohane, I. S. (2009). The Shared Health Research Information Network (SHRINE): A Prototype Federated Query Tool for Clinical Data Repositories. Journal of the American Medical Informatics Association, 16(5), 624-630. doi:10.1197/jamia.m3191Martinez-Millana, A., Fico, G., Fernández-Llatas, C., & Traver, V. (2015). Performance assessment of a closed-loop system for diabetes management. Medical & Biological Engineering & Computing, 53(12), 1295-1303. doi:10.1007/s11517-015-1245-3Foundation for Intelligent Physical Agentshttp://www.pa.org/González-Vélez, H., Mier, M., Julià-Sapé, M., Arvanitis, T. N., García-Gómez, J. M., Robles, M., … Lluch-Ariet, M. (2007). HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Applied Intelligence, 30(3), 191-202. doi:10.1007/s10489-007-0085-8Bellazzi, R. (2014). Big Data and Biomedical Informatics: A Challenging Opportunity. Yearbook of Medical Informatics, 23(01), 08-13. doi:10.15265/iy-2014-0024Maximilien, E. M., & Singh, M. P. (2004). A framework and ontology for dynamic Web services selection. IEEE Internet Computing, 8(5), 84-93. doi:10.1109/mic.2004.2

    Users' Experiences of a Mobile Health Self-Management Approach for the Treatment of Cystic Fibrosis: Mixed Methods Study

    Get PDF
    [EN] Background: Despite a large number of clinical trials aiming at evaluating the digital self-management of chronic diseases, there is little discussion about users¿ experiences with digital approaches. However, a good user experience is a critical factor for technology adoption. Understanding users¿ experiences can inform the design of approaches toward increased motivation for digital self-management. Objective: This study aimed to evaluate the self-management of cystic fibrosis (CF) with a focus on gastrointestinal concerns and the care of young patients. Following a user-centered design approach, we developed a self-management app for patients and parents and a web tool for health care professionals (HCPs). To evaluate the proposed solutions, a 6-month clinical trial was conducted in 6 European CF competence centers. This paper analyzes the user acceptance of the technology and the benefits and disadvantages perceived by the trial participants. Methods: A mixed methods approach was applied. Data were collected through 41 semistructured qualitative interviews of patients, parents, and HCPs involved in the clinical trial. In addition, data were collected through questionnaires embedded in the self-management app. Results: Support for enzyme dose calculation and nutrition management was found to be particularly useful. Patients and parents rapidly strengthened their knowledge about the treatment and increased their self-efficacy. Reported benefits include reduced occurrence of symptoms and enhanced quality of life. Patients and parents had different skills, requiring follow-up by HCPs in an introductory phase. HCPs valued obtaining precise information about the patients, allowing for more personalized advice. However, the tight follow-up of several patients led to an increased workload. Over time, as patient self-efficacy increased, patient motivation for using the app decreased and the quality of the reported data was reduced. Conclusions: Self-management enfolds a collaboration between patients and HCPs. To be successful, a self-management approach should be accepted by both parties. Through understanding behaviors and experiences, this study defines recommendations for a complex case¿the demanding treatment of CF. We identify target patient groups and situations for which the app is most beneficial and suggest focusing on these rather than motivating for regular app usage over a long time. We also advise the personalized supervision of patients during the introduction of the approach. Finally, we propose to develop guidance for HCPs to facilitate changes in practice. As personalization and technology literacy are factors found to influence the acceptance of digital self-management of other chronic diseases, it is relevant to consider the proposed recommendations beyond the case of CF.The authors of this paper, on behalf of the MyCyFAPP consortium, acknowledge the European Union and the Horizon 2020 Research and Innovation Framework Programme for funding the project (ref. 643806). The authors would like to thank all project partners for their collaboration during participant recruitment and project management. Without the dedication of participants in terms of time, effort, and valuable input, this publication would not have been possible. The authors would like to thank all the participants who contributed to this work.Floch, J.; Vilarinho, T.; Zettl, A.; Ibáñez Sánchez, G.; Calvo-Lerma, J.; Stav, E.; Halland Haro, P.... (2020). Users' Experiences of a Mobile Health Self-Management Approach for the Treatment of Cystic Fibrosis: Mixed Methods Study. JMIR mHealth and uHealth. 8(7):1-19. https://doi.org/10.2196/15896S11987Webb, T. L., Joseph, J., Yardley, L., & Michie, S. (2010). Using the Internet to Promote Health Behavior Change: A Systematic Review and Meta-analysis of the Impact of Theoretical Basis, Use of Behavior Change Techniques, and Mode of Delivery on Efficacy. Journal of Medical Internet Research, 12(1), e4. doi:10.2196/jmir.1376Free, C., Phillips, G., Galli, L., Watson, L., Felix, L., Edwards, P., … Haines, A. (2013). The Effectiveness of Mobile-Health Technology-Based Health Behaviour Change or Disease Management Interventions for Health Care Consumers: A Systematic Review. PLoS Medicine, 10(1), e1001362. doi:10.1371/journal.pmed.1001362Marcolino, M. S., Oliveira, J. A. Q., D’Agostino, M., Ribeiro, A. L., Alkmim, M. B. M., & Novillo-Ortiz, D. (2018). The Impact of mHealth Interventions: Systematic Review of Systematic Reviews. JMIR mHealth and uHealth, 6(1), e23. doi:10.2196/mhealth.8873Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. doi:10.2307/30036540Cystic Fibrosis Europe2020-05-27https://www.cf-europe.eu/Conway, S., Balfour-Lynn, I. M., De Rijcke, K., Drevinek, P., Foweraker, J., Havermans, T., … Peckham, D. (2014). European Cystic Fibrosis Society Standards of Care: Framework for the Cystic Fibrosis Centre. Journal of Cystic Fibrosis, 13, S3-S22. doi:10.1016/j.jcf.2014.03.009Floch, J., Zettl, A., Fricke, L., Weisser, T., Grut, L., Vilarinho, T., … Schauber, C. (2018). User Needs in the Development of a Health App Ecosystem for Self-Management of Cystic Fibrosis: User-Centered Development Approach. JMIR mHealth and uHealth, 6(5), e113. doi:10.2196/mhealth.8236Calvo-Lerma, J., Martinez-Jimenez, C. P., Lázaro-Ramos, J.-P., Andrés, A., Crespo-Escobar, P., Stav, E., … Ribes-Koninckx, C. (2017). Innovative approach for self-management and social welfare of children with cystic fibrosis in Europe: development, validation and implementation of an mHealth tool (MyCyFAPP). BMJ Open, 7(3), e014931. doi:10.1136/bmjopen-2016-014931Borowitz, D., Gelfond, D., Maguiness, K., Heubi, J. E., & Ramsey, B. (2013). Maximal daily dose of pancreatic enzyme replacement therapy in infants with cystic fibrosis: A reconsideration. Journal of Cystic Fibrosis, 12(6), 784-785. doi:10.1016/j.jcf.2013.05.011Calvo-Lerma, J., Fornés-Ferrer, V., Peinado, I., Heredia, A., Ribes-Koninckx, C., & Andrés, A. (2019). A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLOS ONE, 14(2), e0212459. doi:10.1371/journal.pone.0212459Calvo-Lerma, J., Hulst, J., Boon, M., Martins, T., Ruperto, M., Colombo, C., … Ribes-Koninckx, C. (2019). The Relative Contribution of Food Groups to Macronutrient Intake in Children with Cystic Fibrosis: A European Multicenter Assessment. Journal of the Academy of Nutrition and Dietetics, 119(8), 1305-1319. doi:10.1016/j.jand.2019.01.003Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004Vo, V., Auroy, L., & Sarradon-Eck, A. (2019). Patients’ Perceptions of mHealth Apps: Meta-Ethnographic Review of Qualitative Studies. JMIR mHealth and uHealth, 7(7), e13817. doi:10.2196/13817Anderson, K., Burford, O., & Emmerton, L. (2016). Mobile Health Apps to Facilitate Self-Care: A Qualitative Study of User Experiences. PLOS ONE, 11(5), e0156164. doi:10.1371/journal.pone.0156164Boon, M., Calvo-Lerma, J., Claes, I., Havermans, T., Asseiceira, I., Bulfamante, A., … Ribes-Koninckx, C. (2020). Use of a mobile application for self-management of pancreatic enzyme replacement therapy is associated with improved gastro-intestinal related quality of life in children with Cystic Fibrosis. Journal of Cystic Fibrosis, 19(4), 562-568. doi:10.1016/j.jcf.2020.04.001Hevner, March, Park, & Ram. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75. doi:10.2307/25148625-ISO 9241-210:2010 Ergonomics of Human-System Interaction — Part 210: Human-Centred Design for Interactive SystemsInternational Organization for Standardization20102020-06-05https://www.iso.org/standard/52075.htmlVilarinho, T., Floch, J., & Stav, E. (2017). Co-designing a mHealth Application for Self-management of Cystic Fibrosis. Lecture Notes in Computer Science, 3-22. doi:10.1007/978-3-319-67687-6_1Kristensen, G. K., & Ravn, M. N. (2015). The voices heard and the voices silenced: recruitment processes in qualitative interview studies. Qualitative Research, 15(6), 722-737. doi:10.1177/1468794114567496Etikan, I. (2016). Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1. doi:10.11648/j.ajtas.20160501.11Bryman, A. (2006). Integrating quantitative and qualitative research: how is it done? Qualitative Research, 6(1), 97-113. doi:10.1177/1468794106058877Klein, H. K., & Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly, 23(1), 67. doi:10.2307/249410Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. doi:10.1191/1478088706qp063oaLee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communications of the Association for Information Systems, 12. doi:10.17705/1cais.01250Calvo-Lerma, J., Hulst, J. M., Asseiceira, I., Claes, I., Garriga, M., Colombo, C., … Ribes-Koninckx, C. (2017). Nutritional status, nutrient intake and use of enzyme supplements in paediatric patients with Cystic Fibrosis; a European multicentre study with reference to current guidelines. Journal of Cystic Fibrosis, 16(4), 510-518. doi:10.1016/j.jcf.2017.03.005Johnson, K. B., Patterson, B. L., Ho, Y.-X., Chen, Q., Nian, H., Davison, C. L., … Mulvaney, S. A. (2015). The feasibility of text reminders to improve medication adherence in adolescents with asthma. Journal of the American Medical Informatics Association, 23(3), 449-455. doi:10.1093/jamia/ocv158Granger, D., Vandelanotte, C., Duncan, M. J., Alley, S., Schoeppe, S., Short, C., & Rebar, A. (2016). Is preference for mHealth intervention delivery platform associated with delivery platform familiarity? BMC Public Health, 16(1). doi:10.1186/s12889-016-3316-2Cook, K. A., Modena, B. D., & Simon, R. A. (2016). Improvement in Asthma Control Using a Minimally Burdensome and Proactive Smartphone Application. The Journal of Allergy and Clinical Immunology: In Practice, 4(4), 730-737.e1. doi:10.1016/j.jaip.2016.03.005Cafazzo, J. A., Casselman, M., Hamming, N., Katzman, D. K., & Palmert, M. R. (2012). Design of an mHealth App for the Self-management of Adolescent Type 1 Diabetes: A Pilot Study. Journal of Medical Internet Research, 14(3), e70. doi:10.2196/jmir.2058Riis, A., Hjelmager, D. M., Vinther, L. D., Rathleff, M. S., Hartvigsen, J., & Jensen, M. B. (2018). Preferences for Web-Based Information Material for Low Back Pain: Qualitative Interview Study on People Consulting a General Practitioner. JMIR Rehabilitation and Assistive Technologies, 5(1), e7. doi:10.2196/rehab.8841Goetz, M., Müller, M., Matthies, L. M., Hansen, J., Doster, A., Szabo, A., … Wallwiener, S. (2017). Perceptions of Patient Engagement Applications During Pregnancy: A Qualitative Assessment of the Patient’s Perspective. JMIR mHealth and uHealth, 5(5), e73. doi:10.2196/mhealth.7040Giunti, G., Kool, J., Rivera Romero, O., & Dorronzoro Zubiete, E. (2018). Exploring the Specific Needs of Persons with Multiple Sclerosis for mHealth Solutions for Physical Activity: Mixed-Methods Study. JMIR mHealth and uHealth, 6(2), e37. doi:10.2196/mhealth.8996Aujoulat, I., d’ Hoore, W., & Deccache, A. (2007). Patient empowerment in theory and practice: Polysemy or cacophony? Patient Education and Counseling, 66(1), 13-20. doi:10.1016/j.pec.2006.09.008Waite-Jones, J. M., Majeed-Ariss, R., Smith, J., Stones, S. R., Van Rooyen, V., & Swallow, V. (2018). Young People’s, Parents’, and Professionals’ Views on Required Components of Mobile Apps to Support Self-Management of Juvenile Arthritis: Qualitative Study. JMIR mHealth and uHealth, 6(1), e25. doi:10.2196/mhealth.9179Lubberding, S., van Uden-Kraan, C. F., Te Velde, E. A., Cuijpers, P., Leemans, C. R., & Verdonck-de Leeuw, I. M. (2015). Improving access to supportive cancer care through an eHealth application: a qualitative needs assessment among cancer survivors. Journal of Clinical Nursing, 24(9-10), 1367-1379. doi:10.1111/jocn.12753Simons, L., Valentine, A. Z., Falconer, C. J., Groom, M., Daley, D., Craven, M. P., … Hollis, C. (2016). Developing mHealth Remote Monitoring Technology for Attention Deficit Hyperactivity Disorder: A Qualitative Study Eliciting User Priorities and Needs. JMIR mHealth and uHealth, 4(1), e31. doi:10.2196/mhealth.5009Velu, A. V., van Beukering, M. D., Schaafsma, F. G., Frings-Dresen, M. H., Mol, B. W., van der Post, J. A., & Kok, M. (2017). Barriers and Facilitators for the Use of a Medical Mobile App to Prevent Work-Related Risks in Pregnancy: A Qualitative Analysis. JMIR Research Protocols, 6(8), e163. doi:10.2196/resprot.7224Switsers, L., Dauwe, A., Vanhoudt, A., Van Dyck, H., Lombaerts, K., & Oldenburg, J. (2018). Users’ Perspectives on mHealth Self-Management of Bipolar Disorder: Qualitative Focus Group Study. JMIR mHealth and uHealth, 6(5), e108. doi:10.2196/mhealth.9529Al Dahdah, M. (2017). Health at her fingertips: development, gender and empowering mobile technologies. Gender, Technology and Development, 21(1-2), 135-151. doi:10.1080/09718524.2017.1385701Consolvo, S. (2012). Designing for Healthy Lifestyles: Design Considerations for Mobile Technologies to Encourage Consumer Health and Wellness. Foundations and Trends® in Human–Computer Interaction, 6(3–4), 167-315. doi:10.1561/110000004
    corecore